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The paper reveals a new interpretation of the Standard Model for elementary particle
physics. The approach is based on the concept of chaotic behavior applied to the gauge
transformation. Following the framework of bifurcation theory, the paper provides a simple
and consistent picture of lepton and boson production.

The author reveals the fractal structure of the quantum harmonic oscillator. A map of
quanium field organisation is developed together with the Lagrangian formalism of the
model. On this map the structure of the field appears as a “branching out” pattern.

The paper describes the internal symmetry between gravity and electromagnetism with
respect to the gauge transfermation. A discussion on the physical meaning of the W field and
of the isospin eigenstate T, is included.

1. Introduction

A major achievement in the field of elementary particle physics has been the
development of the Standard Model (SM). As is currently accepted, this model
represents a unique synthesis of the theory of the strong force (QCD) with the
theory of clectroweak interaction. QCD is basically a non-Abelian gauge
theory on the SU(3) color while the electroweak model successfully describes
the interaction of quarks and leptons.

Although a formally consistent approach, SM is far from being completed.
There are several open questions that await clarification and further extensions
are yet to come. Among the issues that are not covered by the SM, the key
ones are as follows:

(A) Why are there tiizae families of gauge bosons?

(B) Why are there three flavors of neutrinos and why are they left-handed?

(C) Why six quarks and eight gluons?

(D) Is there a physical background underlying the spontaneous breaking of
symmetry and is the Higgs mechanism the only way to understand the
mass spectrum?

0378-4371/90/$03.50 © Elsevier Science Publishers B.V.
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The present paper is intended to fill in some of the remaining “holes” in the
conceptual structure of the SM.

The approach is based upon the geometry of fractals and the theory of
bifurcations applied to nonlinear dynamical systems. As stated, our goal is to
deepen the understanding of SM without altering its fundamental construction.
Consequently, our theory suggests an alternative route to SM.

Fractals have found wide application in many forefront areas of physics such
as condensed matter, crystals growth, polymer statistics, fracture propagatlon
physics of spin systems and so on,

An analysis of the quantum harmonic oscillator performed in phase space
reveals that it is possible to assign a fractal configuration to this space. Since
the scale invariant properties of fractals are intimately connected with the
chaotic behavior of nonlinear systems, it makes sense to further investigate
how these concepts can be incorporated in the SM.

The physical foundation of this treatment lies in the following:

(A) All elementary particles (leptons, quarks and gauge bosons)—taken as
solutions of the quantum field equations—are essentially nonlinear dynami-
cal systems.

(B) The bifurcation theory—as developed by Feigenbaum in 1977-claims uni-
versality over the intérnal evolution of nonlinear dynamical systems.

As a result, there is a specific instability associated with the equations
describing the field transformations. It is shown that this mechanism can unveil
the spectrum of field quanta in a sequential manner.

The paper develops by applying the theory of bifurcations directly to the
gauge transformation. The gauge transformation is the backbone of the whole
SM construction. It is the nonabelian gauge invariance that makes the SM a
renormalizable theory and determines the phenomenological structure of it [1].

The main benefit of this approach lies in the fact that particles appear
organized in a regular and seclf-similar pattern. The quantum field has a
structure which repeats itself from family to family. This “branching-out”
layout is consistent with the nonabelian symmetries of the SM and brings into a
unique picture all known bosons and fermions.

A possible extension of the bifurcation model is also outlined. This formal-
ism explores the derivation of vacuum expectation values for the field in a
manner that bypasses the Higgs mechanism. As mentioned earlier, the frame-
work of the Higgs mechanism is not presently understood.

The paper finally examines a possible extension of the bifurcation model to
include the gravitational field in the picture. The underlying physics relates to
the internal symmetry of gravity and electromagnetism with respect to the
gauge transformation. A discussion on the physical meaning of the W boson
and of the isospin 7, is presented. Several postulates are introduced to make
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the treatment self-contained and to set its limits of validity. The rationale of
each postulate is briefly reviewed below:

(P1). This postulate originates in the uncertainty principle and sets the
quantum-mechanical zero point fluctuations of canonical variables. Therefore it
has to be understood as a definition of the first order differential from the
standpoint of the measurément process.

(P2). This postulate states the definition of a “noise-free” representation of
the theory and originates also in the measurement process of canonical
variables.

(P3). This postulate is a consequence of the “charge” conservation theorems
from the relativistic quantum field theory.

(P4), (P5). These are transcriptions of the exclusion principle and of the
Schwinger—Liiders—Pauli theorem, respectively.

Our approach is part of a gencral effort of theorists to broaden the
knowledge basis of SM. Its relationship with the SM lies mainly in the so-called
Renormalization Group ideas [1, 2] as implied by the diagram in fig. 1.

2. A fractal treatment of the harmonic oscillator

This section is an attempt to prove that the one-dimensional vibrational
mode can be represented as a fractal object. As is well known, the linear
harmonic oscillator is described by canonical operators p and g satisfying the
commutation relation

g, pl=i. (1)
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The analogous classical system exhibits elliptical orbits in the phase space,

2 2
p q

+ — =1 2
2mE  (2E/me®) @

where E is the total energy and m is the reduced mass of the particle. The area
determined by the orbit boundary is always a finite number:

S=deq=n+%, (3)
D

n being a finite positive integer (Sommerfeld’s quantisation rule). To evaluate
the length of the orbit boundary we introduce two postulates as follows.

(P1}). The first order differential of canonical variables has the same order
of magnitude as their respective fluctuations [3],

dg=Ag=Q2w)™"", ©

dp=Ap=(2Ag9)°". (5
(P2). The coordinate fluctuation is smaller than the coordinate itself:

Aglg =1/9Q2w)'"* <1, (6)

The above statement takes into account the fact that measurement of q is
supposed to provide an acceptable level of resolution. Only this circumstance is
able to generate a “noise-free” representation of the field behaviour. The
length of the orbit is the line integral given by

(2E/ma?)1/2 :
_ dp 2q1/2
L=4 f [H(?ﬁ)] dg . (7)
0

Let us replace now the orbit slope by the ratio of coordinate and momentum
fluctuations and use postulate {P2},

(2E/meo?)1/2 (2E/ma?)i2

L=4 [ prieeame [ p+i@ a4 ®
0 ¢
(2E/ma?)l/2 1 (2E/mw?)li2

—>%2 f q'2(1+4q4)”2dq=f“‘+ f (9)

0 1
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This definite integral can be computed starting from the general form [4]:
J=fxf"1(1—'xj"'1(1+ bx™Ydx  (b*>1), (10)

where

p=-1, n=1, m=4, [=}% and [0,1]€][0,(2E/ma®)""],

(11)
which leads us to the following result:
o 1 4°T(4K—-1)
L>2 2 3R 16K (42
where I' represents the factorial function
ri+z)=2z!, (13)
such that
¥ (4K-2)1 < 1
L3 L UKD g4 1 (14)

&K (4K - D = K 4K—-1

This numerical series diverges according to D’Alembert’s convergence criterion

[4]:

. ~ K(4K — 1)
fim =4 m e AR +3)

=4>1. (15)

The result above indicates that the orbit length is a nonfinite quantity while the
area (3) bounded by the same orbit remains finite. This indicates that the
quantum field associated with the harmonic oscillator is suitable for a fractal
description. Furthermore, since scale invariant properties of fractals are closely
related to “chaos” and “strange attractors” in dynamical systems, it makes
sense to attempt to fuse these concepts to SM.

3. The chaotic behavior of the global gauge transformation

Consider an isolated packet of waves representing an arbitrary free field
&(x). There are many examples of such “soliton-like” modes which can be
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configurated as local peaks. For instance one can take the ground state of the
quantum harmonic oscillator [5]:

¢"(x) ~exp(=3x°), (16)

where x stands for the field coordinate and the first order Hermite polynomial
is

Hy(x)=1. (17)

Another traditional “soliton-like” wave can be introduced by performing a
Fourier transformation on the space packet such that [6]

9uld) ~ | s exp(-ik - x) (1) (18)

With a translation of the wave number,

k=k-k,, _ (19)
where
ko=2ml},, (20)

the function (18) has a unique maximum at k' =0 and is symmetrical with
respect to the origin:

dgy ok’ >0  for k' <0,
' 21
dpy/ak'<<0  for k' >0.

Consider now the standard gauge transformation which leaves the structure of
the theory invariant [1] and apply this to (18):

bo(k) = S((k} = exp(—ix) dy(k) , (22)

where y is equivalent to an arbitrary “phase” factor. Notice that exp(—iy) can
be thought as a rotation operator in an appropriate space such that its
components are always smaller or equal than unity. Since rotations generate a
group of transformations with multiplication as a composition rule, a sequence
of iterations applied to (22) will not alter its form. Consequently, from a
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physical standpoint, there is no way of separating “a priori” a first order
iteration from a nth order one given by

B0y = o (0" (B9 ++ - () = exp(=imy) (k) . (23)

n times

On the other hand, transformation (22) defined above belongs to a larger class
of mappings which display chaotic behavior. Under a given set of iterations,
(22) may exhibit convergence to a stable attractor or erratic divergence
depending on the phase selection. It is shown that a gradual variation of the
phase factor drives a sequence of bifurcations such that, for each j = 0, function
(22) has a single unstable orbit of period 2/ [2]. On letting the phase vary
beyond a critical value the cycles generation replicates itself and (22) develops
unstable orbits of period 3-2’. The bifurcation scenario unfolds in a manner
that makes it comparable to the concept of scale invariance derived from the
geometry of fractal sets.

The chaotic behavior of the gauge transformation is similar to the divergence
associated with the harmonic solution of the Klein—Gordon equation

(0%3, +m)$=0, - (24)
where the frequency is a complex number,

0=y +io,=xVE*+m®  (k=2m/}), (25)

such that w; = 0 defines the 'marginal stability and , > 0 generates exponential-
ly growing amplitudes [7].

The above considerations indicate that the non-univocity of phase choice
leads to an internal instability of the gauge transformation. Therefore, the
degeneracy of the gauge fields may be related to a “branching-out” pattern
implied by the bifurcation mechanism. As a result, the operational equivalence
of exp(—iy) and exp(—imy) may be regarded as the source of field ar-
chitecture. :

Furthermore, because gauging the elementary particles physics is the central
idea of the Standard Model, we believe that a “chaotic” formalism can provide
a simple and consistent description of the quantum field dynamics.

4. Postulates and conventions

To develop the frame of our approach the following statements are taken as
assumptions:
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{P3). Antisymmetric fields (labeling fermions) are generated or annihilated
always in pairs. Consequently, the doublets are the fundamental eigenstates of
the fermionic field, while singlets represent excited eigenstates.

(P4). Exclusion principle applies to all fermions.

{P5). CPT invariance is always valid when applied to either bosons or
fermions while partial symmetries (like CP, P, T, . . .) are not necessarily valid
and may be violated.

As a result of (P5), CPT invariance operates as a restriction rule which
forbids some of the field states to appear as distinct (see section 5).

As a convention, the order in which the components of a doublet are listed
corresponds to the time relationship between “cause’ and “effect””. Therefore,
if T stands for the time inversion operator and (f,, f,) is a generic doublet,
then

T(fi, £) =1 f1)- (26)

Finally, because the history of field transformation may be tracked in terms of
phase selection (x) or the number of cycles accumulated within the bifurcation
process (N), either one of these two variables can be taken as an independent
field coordinate. ’

5. The internal dynamics of the quantum field

The goal of this section is to generate and explain a map of field dynamics as
outlined in section 3.

If one takes the period of cycles arisen from bifurcations as an input variable
(N) and the phase y as the output, then a plot of the field architecture looks
like fig. 2.

In this map V,, V,, V,,... or V', V? .. . stand for bifurcation vertices. Let
us consider a generic field of form (18) being subjected to the bifurcation
mechanism. For the time being, the particular structure of the field is not
relevant so ¢,(k) may be scalar, spinorial, vectorial or tensorial. In each of
vertices V; or V/ (j < N) transformation of the field must face the following
“dilemma’’: if n, is the number of cycles already generated and p;is the number
of new cycles, then the field behaves either symmetrically or antisymmetrically
with respect io the transposition ;< p;:

(b(n]-, Pj) = eia‘{b(Pj: nj) ’ e =x1. (27)

It seems natural to assign the symmetry of the field in (27) to bosons while
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antisymmetry is associated with fermions. Since there is no privilege for either
one of the two options, in each bifurcation vertex the field transformation may
“jump” from the first branch of the plot to the second one. Therefore, if one
considers the 2/ pattern of cycle accumulation typical for bosons and the 3 -2’
pattern typical for fermioms, a transition boson—fermion appears to be a
natural consequence of (27).

Let us discuss now each of the map vertices. Following the Standard Model,
there are three symmetries to be taken into account for the gauge bosons:
U(1), SU(2) and SU(3). Accordingly, three families of gauge bosons are
introduced: the photon (v), the weak triplet (W™, W™, W°) and the multiplet
of eight gluons (g, g,, - . . , g;). The above map suggests a logical extension of
this configuration as described below:

(3) Tn V, a number of 2" bosons are created and a natural partner for the
photon () could be the graviton (g).

(b) In V, a number of 2° bosons are created and the weak triplet may be
replaced by two SU(2) weak triplets as follows:

w* wt
V,  L=|lWwWT |, &L=|WT . (28)
Wl] BD

Here B® is the “extra” massive boson added to the initial family (W™, W™,
Ww°).
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(c) In V, a number of 2° bosons are created and these may be identified with
the gluon multiplet (g,, g,,.. ., &)

Following a similar judgement one can describe the structure of the fer-
mionic vertices V.

(a) At V' the field triplicates because a number of 3 - 2° fermions are created.
According to postulate (P3) these eigenstates must be doublets. Since a
transition boson—fermion is likely to take place (see (27)) and V, is the nearest
bosonic vertex, it makes sense to assume that V' is filled in with ultrarelativistic
doublets (neutrino type),

VE @eB), BB, L) (29)

We will focus below only on the electronic neutrino branch. Assuming the CPT
invariance (postulate (P5)), neutrino doublets appear only in a polarized state.
If L and R stand for “left-hand” and “‘right-hand”, then

CPT: (v, V)= (Ver Vedr (30)
where the following line of operations was performed:

Wes D)1 (g V)= (B V)= (Ve B ) - (31)

Consequently, the left-handed neutrinos and the right-handed ones are over-
lapped and only one polarized doublet has physical meaning. This conclusion
agrees with the experimental data [1].

(b) At V* a number of 3-2' eigenstates develops. It makes sense to fill in
this vertex with those leptons which make transitions from the neighbouring
vertices possible. It appears that the electroweak interaction must play here a
major role. A plausible configuration of V> may look like

Vz: (e_: ]_Je)R > (E_, ')L H (e+s ve)L ’ (eJr! )R )

( !ei)Rﬂ ( =e+)L'

The first state is a SU(2) doublet while the second one is a SU(2) singlet. The
reason for introducing such a singlet lies in the formal symmetry between
(e ,v,)gr and (¢7, )y The component v, is missing from the excited state
(e, ). because left-handed antineutrinos are forbidden. The fourth and fifth
states replicate the first and the second ones but are not identical with them. To
check this statement one can apply a CPT operator such that

(32)

€ 7)r— (€% )= (6", 1) = (e e )y, (33)
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o e ) # (%), - (34)
Also

€ ko€ e = e, (35)

( ,e)r#E" dx- (36)

The fifth and sixth states enter as “mirror’” images of electronic singlets as
long as no privilege can be assigned to either left- or right-handed electrons.
Relations (33) and (35) indicate that V” can be basically structured on three
levels in an analogous manner as V', namely: V*: (electron “up”; electron-
neutrino “middle”; electron “down”) because all the eigenstates listed in (32)
are interchangeable with their symmetrical images. For instance,

(e_= 1_"a:)RE(vczvﬁ:-t.)L= T(E+, ve)L 3 (37)
€% J=( ,e)e=P( ,e"). (38)

(c) At V? a number of 3-2° eigenstates develops which can be related to V?
and V,. Therefore, the structure of V* may be based on the quarks family and
displays the following organisation:

(ua!daz)Li' (ua’da)R’ (‘:la’éa)Lﬁ (Elanéa)R *
v (u,es dp)]_: (llﬂ, d,e)p.s (‘-_1,37‘_:1,9)]_,5 (1;15 ; Elp)R , (39)
(s, ds), (W ds), (U5, d5)0, (U5, d5)z-

Here (a, B, 8) is the triplet of colors carried by quarks such that
atpB+s=1. (40)

Let us point out that quarks enter only in doublets and cannot be therefore
isolated as single excitations. Quark triplets appear as linear superpositions of
these doublets.

Since every color has an anticolor (&, 8 or 8), CPT invariance must be
operating as a prohibiting criterion for additional combinations in (39). In
particular

(Uar d,)1 > (Uzs dg)p = (g, dg )= (U, Ay ) - (41)

Notice here that C operates on the color only. If C would have been set to
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Table 1

Vertex N Configuration

v ) 2 YE

v, 4 W wW'B W

v, 8 Bi82»---1 B8

v 3 v, 7)., v.) (v, v,)

Vz 6 (e7v)rle”. N (e+’ve)_]. (e_+a )1_1( se e ')
v 12 (ua’da)r. (u,,d.)g - .. (u'y’dy)L (“y’dy)R

operate on the quark itself, then

CPT

(uucida)Le(aa’ﬁa)R#(ﬁa!aa)R' (42)

To conclude this section let us mention that the muonic and taonic branches
separated at V' are equivalent to the electronic branch discussed above.
Therefore, the field architecture stays invariant with respect to the substitution

(e, e,u,d)—=(v,, w,c,8)—>(,,1,b,¢). (43)

All the above results can be listed in one summary table as presented in table
L

6. A Lagrangian description of the bifurcation model

In the conventional formulation of the Standard Model, the full Lagrangian
contains the operators of covariant differentiation in the kinetic term and
mass + interaction contributions. For the bosons the mass term is —m°h* and
the interaction term is linear'in b. For the fermions both mass and interaction
terms depend linearly on the mass and the interaction is also a linear
expression of the four-vector current,

= (r=0,1,23), (44)
such that

L, =3D,bD"b — m’p* — bp(x*),
) i ) (45)
Ly=fiy"D, f— fmf + Qfy'fA"

where L, (L) stand for the bosonic (fermionic) lagrangian, p(x*) is the source
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of the scalar ficld while Q and A are, respectively, the charge and four-
potential of the vector field.

To perform a complete description of a full Lagrangian, one would have to
use a complicated formula taking into account all possible combinations
between terms, such as

qull = Lh + Lf + Lkinetic,bf + Lmass,bf s Linteractinn,bf ) (46)

The full Lagrangian would have a composite structure including scalars,
pseudoscalars, spinots or vectors, .

For our model we will attempt to get the full Lagrangian starting from a
simpler and more effective framework. To achieve this, several principles are
to be considered:

(a) The approach is based upon a perturbative method.

(b) The full Lagrangian takes the phase y as variable and the bosonic and
fermionic fields as coefficients in the series expansion.

(c) The series contains powers less or equal to four. It can be shown that
powers greater than four lead to infinities and are to be excluded [1].

(d) The interaction for both bosonic and fermionic fields is included in the
quartic term of the series.

To derive the spectrum of the ground states arisen in a bifurcation vertex,
one has to minimize the potential:

L Jay=0. (47)

int+mass!
Following the standard procedure, further perturbations are defined by ex-
panding the phase around the ground states. Accordingly, the ground states
together with their perturbations fully specify the sequence of particles created
as a result of bifurcation. An alternative expression for (23) is

69w =3 E 0= 3 06, (48)
where

j=21, (492)

800 = (18,0120, (491)

E=n’y". (49¢)
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It is natural to assume that the general form of the function potential must be a
power series of the field ¢,(k):

.4

int-+mass '= E an lﬂl(k) 3 an E R ? (50)

n=0

V=L
as long as the Lagrangian has to be invariant under the gauge transformation

VIdo(k)]— Vexp(—ix) ¢,(k)] . (51)

Replace now the terms in (50) by their gauge images given by (22),

¢ (k) — exp(—iny) ¢5(k) = exp(—iny) ¢,(k) o (k) , (52)
or
Bo(k)— ¢ (k) by (k) (53)

where ¢ (k) represents the nth iterate of ¢(k) (23).
(50) then becomes :

V=2 4,657 0) 6§, (54)
or
O =3 a6 ® (2 ame). (59)

Because the series must stop at the quartic term the exact formula (55) gives
way to an approximate one:

4 4
()~ 2 ag(g'= 2 bt (56)

To get an acceptable level of confidence for the use of (56) one must normalize
(49c) such that

|€l<1. (57)

The interaction term is the last one (I=4) and b, represents the strength
coefficient for both fermions and bosons.
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The mass term is a superposition of odd and even powers. Since the
description is general, we would expect a symmetrical behaviour of the mass
term for bosons and an antisymmetrical one for fermions. Therefore, (56)
splits into two components,

Vb = bZ,massfz + bt!,intg:4 L
(58)
‘/f = b0§0 + bl,massg + b3§3 + b4,int§4 b}

Vb,mass( ‘f) = Vb,mass(_ 'f)
(at bifurcation vertices) . (59)

V'f,mass( f) = _I]f,mass(_g)

Under these circumstances (47) gives for bosons

£, = +V=b,/2b,. (60)

These are the vacuum expectation values of £ and the treatment coincides with
the spontaneously broken symmetry approach for the so-called Higgs field [1].
For fermions we get a cubic equation with the canonic form

E+ptitqgt+r=0, (61)
where
p=3b,4b,, q=0, r=bJ4b, (b,#0). (62)

To check the nature of its solution, one has to evaluate the discriminant Q
given by [8]

Q=%(-%p)+i(Ep’ +7r?, (63)
or
Q=pr+ir=rgp’ +in. (64)

As long as &, #0 (r+#0) the cubic equation has three distinct roots which
provide the vacuum expectation values for fermions.

The vacuum solutions correspond to the true stationary levels of the field
subjected to the bifurcation mechanism. Therefore, it makes sense to think of
them as of “massless” states associated with the field. Consequently, &, , are
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connected with the photon and graviton (vertex V, ) while the three solutions of
(61) relate to the ultrarelativistic neutrino doublets produced at vertex V',
Bifurcations evolve in a self-similar manner at next vertices repeating the
pattern of V, or V', This is, for instance, the reason why at V, (and V?) the
map contains a duplicate (a triplicate, respectively) of the vacuum spectra,

(W, W )=| T,
V,: {(w B[]} (SU(2) doublet) (65)

[ Ju, €5 Dl=11),
Vi 0, (€70 1=10), (SU(2) triplet) (66)
[( ’e_)Rﬁ ( =e+)L]:|\L)'

As perturbations of the vacuum states, vertices V; or V/ (j=2) carry an inner
excitation energy related to the shift from the ground level. Accordingly, each
of the vertices V; or V! (j=2) is the source of a unique mass spectrum. This
circumstance supplies a plausible interpretation of how the mass should enter
into the model.

7. Inertial frames under Lorenz invariance

The first segment of the bosonic branch (see fig. 2) represents the most
familiar and simpler case of gauge invariance: the Lorenz transformation of
inertial frames. It comes almost naturally to consider the covariance of the
theory with respect to inertial frames as an immediate example of the gauge
concept.

We will show in section 8 that an identical approach covers the gauge
formalism of both electromagnetic and gravitational fields. Consequently, the
Lorenz transformation is to be thought only as a first order approximation of
the gauge formalism up to the first vertex (V,).

Take two arbitrary inertial frames and let V stand for their relative linear
velocity. In the Lorenz formula the rotational transposition of the coordinates
operates as a 2 X 2 matrix,

'\ (cos¥ sin‘I’)(t)
(x’) B (—sin Wocos ¥/ \x/’ (67}
where ¥ is the imaginary rotation angle given by

V=itan¥,

(68)
sin¥=—-iV/V1-V?, cos¥=1/V1-V2.
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The space—time forms a continuous scalar field whose components are phy-
sically equivalent. Following a standard representation, define the complex
scalar

= +ix)V2=eT(t+ix)V2=¢ "y,
| (69)
= —ix')VZ=e"n*.

Note that (69) is identical with (22). Consequently, the space—time can be
treated as a regular pseudoscalar field. If m is the mass associated with it, the
Lagrangian depends only on n*n:

= 2 =
L=3,n""n—mm*n (p=0,1). (70)
Two conserved “charges” emerge from Lorenz invariance of the field #:

S, =i(nd,n* —n*3, 1), &8, =0 )
I=x*-¢, 3,1=0 (interval) .
Let us recall now that the above relations (67)—(71) can be duplicated for
the electromagnetic field under the following substitutions:

= A (i=1,2,3),
(72)
t— o .

Therefore, there is no formal difference between the behavior of the space-
time field (x', ¢) and the electromagnetic field (A’, ¢) with respect to the
Lorenz transformation of inertial frames.

This circumstance gives us grounds to believe that the space—time and
electromagnetic fields overlap in a gauge transformation theory. One may
expect that these two fields separate at the ultrarelativistic limit, as long as
V—¢(=1) is the single instability associated with (68) and (69).

8. The ultrarelativistic =cenario: photon—graviton split

As is well known, the Schrédinger equation describing the movement of a
nonrelativistic spinless electron in an electromagnetic field,

[(1/2m, ) (—iV + eA)’ — (1d/6t + ep)| ¥, =0 (73)
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is left unchanged if one operates a gauge transformation on the electron
wavefunction and on the field [1]:

Wise N, (742)

AP AR —aty  (e=1). (74b)

We want to show that an identical picture can be developed for a particle of
mass m submerged in a gravitational field. Following Einstein, a space—time
wavefunction is to be attached to the particle:

" em, (75)
which may be expressed in the standard exponential form

7" = ()" €™, (76)

where (n,)" is an amplitude and p, is the phase four-vector. Consequently, the
equation of motion [9]

du,/ds—39,g,,uu"=0, (77)

where u,, is the four-velocity and g,,, the metric tensor, would not be affected if
one would replace the following items:

" —=n',
(78)
Bow ™ 8w -
The presence of the particle in the gravitational field is expected to produce a
small perturbation of the latter. Therefore, a weak fluctuation of the space—
time geometry is to be written as

' =qt o+, (792)

g:lr.u = ng + Bgvm . (79b}
Taking into account (76), (79a) can be reduced at a form similar to (74a),

nrn_) (7]0)# e—i(p,‘*‘ﬁp,,b) ) (80)
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(79b) leads to a first order variation of the metric tensor given by [9]
8o & — (3P, +3,0,), P, =exp(=idp,), (81)

which is analogous with (74b).

Because we are operating in a non-Euclidian geometry, the weak fluctua-
tions of the space—time have to be considered as covariant perturbations. Thus,
the simple derivatives in (81) are to be replaced by the covariant ones whose
iterations do not alter the gauge invariance of the theory.

Since (77) originates in cancelling out the covariant derivative of the
four-velocity [9, 10],

Du* =0, (82)

it is now obvious that a covariant perturbation of (82) induced by (80) would
not change its form, i.e.

D" +8u*)=0,
(83)
D(u*)=0,

or

D(3u*) = d(d3u™) — 5(3u*) =0, (84)

where du” are the small fluctuations of the four-velocity.

Let us investigate now a further development of our approach to the
Standard Model.

As long as the electromagnetic and gravitational fields seem to have a unique
background originated in the gauge transformation, it makes sense to reveal a
unique formula for the covariant derivative related to these fields.

For an electrically charged particle O submerged in an clectromagnetic field
A" the covariant derivative is [1]

D* = 3* —iQA* . (85)

Consider an arbitrary tour-vector V* and recall its covariant derivative for a
gravitational field:

DV* = (3, V* + ' V") dx” (86)

where I'" are the Christoffel symbols.

te)
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For the sake of simplicity let us set
x| =1, (87)
and make the transposition [9]
7 Vi=v*s, , (88)

where &), is the Kronecker symbol. (86) becomes

DV*=(3, + %6 g“rT, V", (89)
where
I-;,vw = awgsu s avgsm - asgvm * (90)

Here 3, and g** are constants with respect to the covariant differentiation [9]
and therefore they can be compared to the ¢lectrical charge in (85). Notice also
that I, is written in the same form as the tensor of the electromagnetic field:

F,=3,A,—-3,4,: (91)

The treatment outlined above suggests a physical interpretation of the weak
isospin as well as a definition for the component W of the SU(2) weak triplet
(W*, W°). To achieve this, let us analyze the second term of the covariant
derivative expressed in the Standard Model as [1]

T,=—1ig,YB, . | (92)

The massive bosonic field B is a linear superposition of the electromagnetic
field A, and of W

B, =V1+[(g/g)Y. ] A, +(8/8) Y, We=cA, +c, W, (93)
such that (92) becomes
T,=-ig(Q - T,)(c, A, +c,W,). (94)

In an orthogonal representation, we can conveniently cancel out some compo-
nents of the scalar product,

QW, =T,A, =0, (95)
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and (94) reduces to
T,=—ig,c,QA, +igic YT,W, =T+ T . (96)

Since the first term is an electromagnetic contribution (according to (85)), the
second term may be assigned to a gravitational one. Given the orthogonality
condition, the gravitational component becomes

Tg= _—iglc?v TiWﬂ (c?v = 23132_1) . (97)

A comparison of (97) with the second term of (89) reveals the following
similitudes:

T;—8%g", Wo—T,,,. (98)

" B,

This circumstance indicates that the isospin and the W particles are intimately
connected with the gravitational ficld.
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